Archaeology + Ethnobotany = Palaeoethnobotany?

Alexandre Chevalier
Université, Genève

Summary

The archaeobotanical analysis in the Central and Northern Andes, which developments are recent, turn often to ethnographical and historical models for interpreting archaeological data. This poorly controlled comparisons, frequently lead to unverifiable, or even unacceptable, palaeoethnobotanical hypotheses. On which basis then, may we interpret archaeobotanical data? Moreover, is there any way it can be done in Andean Americas? We will take the site of Pampa Chica (Lurín, Peru) an example of this, and try to outline future investigations in that topic.

Introduction

I became interested in the use of ethnographical models for the interpretation of archaeological remains, whilst conducting analyses of archaeobotanical remains in the context of a research project in the Lurín valley, in the Peruvian Central coast (Fig. 1).

In fact, I had been commissioned to conduct the archaeobotanical analyses of the macroremains of the Pampa Chica site (Fig. 2). While going through the determinations, it quickly became apparent that there was a hiatus between the preliminary functional interpretations of certain parts of the site and my botanical identifications. More precisely, this was the case for sector 2 recinto 22 (Fig. 3), which had been determined as a place for the production of maize beer or chicha because of the shape and size of the ceramics and the fact that there were maize remains.

In light of the totality of archaeological remains, this hypothesis seemed somewhat exaggerated. In fact, it was based on a holistic approach that made inferences about technical and economical processes of chicha production, as well as inferences about complex social and political relations.

The aim of this paper is not to criticize the behavior of a particular archaeologist, since my role as archaeobotanist is to help the archaeologist interpret his site and its history, but rather to question the use of certain heuristic models that may lead to abusive interpretations of archaeological facts.

I will start by reviewing available data on maize from Peru, and critically evaluate the role of maize in Andean archaeology. Secondly, I will present the models used for interpreting maize remains and discuss the references used for the case of Pampa Chica. Finally, I will present my own botanical analyses for Pampa Chica.

Archaeological data

Before discussing problems associated with the use of ethnographic ideologies, or with the application of models for interpreting archaeological remains, we would like to question the value that gets attributed to remains: not only the «scientific» value, but also the «emotional» value. In fact, there is greater pressure for interpretation of remains that have both a scientific and/or an emotional value, than for remains that lack «meaning». Even though this attitude is human, it often leads a less rigorous interpretation. It should be noted that more often than not, the emotional value leads to an overestimation of the scientific value of remains.

Consider the value of maize (Zea mays L.) in Peru. Although its real scientific value depends on the archaeological context and the research problem of the site, its’ emotional value is always very high varying from: «need to take into account, but not a determinant» to «gives new and startling information capable of changing our vision of the past». Consequently, the perception of maize and its’ domestication, production and consumption in pre-Columbian world is generally overestimated.

In fact, valid archaeobotanical data have shown that maize (Zea mays L.) appeared quite late in Peru, and that it remained secondary for a long time in pre-Columbian Peruvian economies. (Chevalier 1993, 1999; Pearsall 1992, 1994a, 1994b, 1995; Pearsall & Piphero 1990, Piphero 1991; Piphero & Pearsall 1998). Although several occurrences are reported for the Preceramic period (prior to ~2200 BC), their validity is undermined by problems of datation and

1 Or: pertinence of information given by the remain as a function of the research problem.
2 Under this term we include all non scientific aspects - ideological, political, or even social that are linked and influence archaeology.
3 Sites of Aspero, Culebras, Las Aldas, and Los Gavilanes in the north coast, Pikimachay and Guatirro in the central Andes.
contextualization. First reliable evidence goes back to the initial period only (~2200 to ~1400 BC) with the sites of La Galgada (GRIEDER et al. 1988), Mina Perdida (CHEVALLIER, nd), Cardal (BURGER 1987; CHEVALLIER, nd; UMLAUF 1988, 1993) or Pampa Rosario (POZORSKI & POZORSKI 1987), increasing at the Early Horizon (~1400 to ~100 BC).

In addition, it should be noted that not all sites have maize (PEARSALL 1992: 192), that the minimum number of individuals is very low, and the dimensions of the grains and the cob are still quite small. During the Early Intermediate Period (~100 BC to ~700 AD), maize is reported for all the sites of that period, and it had become more important in size and quantity. Although in the absence of systematic analyses it is difficult to know what role maize played in the diet, it is probable that towards the end of this period (from ~600 AD), maize represented at least in the north coast the principal component of daily diets (CARDENAS et al. 1997: 148). Whatever the implications of Cardenas’ affirmation, what we can say is that maize is an essential part of the ideology and of political groups in the early intermediate period if you consider the numerous representations of maize in ceramics by the Mochicas (EUBANK DUNN 1979) or the textiles and ceramics, as well as the accompanying materials by the Nazca (PAUL 1986; 1980; PROULX 1968). From the Middle Horizon period (about 700 AD) we can consider that maize is an important food in the coast and in the Andean valleys. This phenomenon may be related to the apparition and expansion of the Wari as suggested by Katharina SCHREIBER (1991). From then on, maize constituted a staple food, or at least played a central role in agronomic politics and in the inca ideology (HASTORF 1990, 1993; HASTORF & EARLE 1986; MORRIS 1973, 1985; MORRIS & THOMPSON 1985; ROSTWOROWSKI DE DIEZ CANSECO 1967-68, 1977, 1989).

Los Gavilanes dates back to 2890-2480 BC (Epoca 2: GX5076, 4140 ± 160 BP. Calibration conducted for 1s, 68.2% of confidence, STUIVER & KRA 1993) (STUIVER et al. 1993), with Oxcal 3b2 (BONAVIA 1982; GRUBER 1992; POPPER 1982), but highly debated (McK BIRD 1978, 1990; PEARSALL 1992) because the direct datation of maize obtained was actually between ~200 to 600 BC non calibrated (BONVAIA 1982, 73). Only three maize cobs from Apero could come from undisturbed pre-ceramic contexts (As1V-4=5 et As1D-1=2), but the specimens are found each time of the superior layers that have not been directly dates (FIELDMAN 1980, 1985). Finally, la Cueva de Guatilato (Lynch 1960; LYNCH et al. 1985) gives also a very recent date 360 BC to 10 our era (OxA 110 2150 ±150. Calibration conducted for 1s, 68.2% of confidence, STUIVER & KRA 1993) with Oxcal 3b2.
Cultural and political archaeology

Why such an overestimation of the perceived role of maize in the economy and ideology of pre-Inca groups in Peru? The influence of American archaeology on Peruvian archaeology is probably one of the main reasons. In fact, the interest given to maize is almost an obsession to a lot of North American archaeologists, in particular those that support the anthropological archaeology. For whatever reason (internal consumption? Mesoamerican influence? Need to find the origins?), from the very start of research on the domestication of maize (Cutler 1946; Galinat 1954; Mangelsdorf et al. 1967; Mangelsdorf & Reeves 1939), a lot of American archaeologists working in Mesoamerican and Andean countries have shown the same exaggerated interest for maize. Generally, these archaeologists have strained the interpretation of archaeological remains, often failing to adapt their hypothesis to the archaeological facts. Bruce Benz (1994: 158) asked himself the same question which included a partial answer: «What is it about maize that interest us? I suspect our interest in the cultigen of maize derives in part from a belief that we might be able to reconstruct patterns and processes of cultural evolution and diversification using maize race phyllogenies».

Surprisingly, the interest for the past of maize is supported by contemporary research on the genotype of maize to improve the quality genetic crops. In fact, the aim of most genetic research is to find the greatest variety of old and modern maize to be able to re-create the most complete genetic map, and thus be able to exploit it in the creation of new improved varieties. Besides, the manuals we use in archaeology to determine the different archaeological races of maize have been published by the Agricultural Board of the National Academy of Science whose major aim is to «study and report on scientific problems of agriculture in relation to the national economy».

Therefore, we are no longer in the context of an archaeological research perspective, but in the context of a national economic priority. The goal is not to accumulate knowledge of the past cultural evolution through the study of maize phyllogenies to paraphrase Benz, but rather to index races for future exploitation of their characteristics when developing new varieties.

In a scientific system that pushes researchers to «sell» their research to guarantee funds for investigation and thus ensure their careers, the temptation to create pseudo-events is big. Specially, is we know that the element in question – maize – is extremely significant for the moral and financial bodies that finance these projects. The race is on to find the oldest father of maize and of its derivatives, chicha, without giving too much consideration to the archaeological realities that we can loose.

Finally, we shouldn’t forget the impact that nationalism has on the overestimation of certain archaeological remains. Maize is clearly a national symbol, just as chicha. A good (unfortunate?) example of the impact of nationalism on archaeology is the insistence of certain Peruvian archaeologists to consider Peru as one of the oldest centers of diversification, together with Mexico, or further still as a center of domestication of maize (Bonavia 1992; Bonavia &

\[\text{5} \text{ The identification of vegetal archaeological remains is conducted by using contemporary analogies, in fact, we should be talking about the probability of accurate identification.} \]

\[\text{6} \text{ Covers page of these books, for example: (Grobman et al. 1981).} \]

\[\text{7} \text{ The common scientific saying «publish or perish» is quite representative of this situation.} \]
Groban 1989a, 1989b). These claims are made despite the archaeological evidence (or lack of evidence) from Central and South America (Pearsall, 1978, 1992, 1995; Pearsall & Piperno 1990; Piperno & Pearsall 1998).

If we were to accept these claims, chicha would have been produced from the beginning with wild maize! Peruvian maize beer would be just as old as Egyptian beer. Of course, if it isn’t European beer that is the oldest, or Spanish or German...

As argued by Daniel Marguerat «Let us not forget that the past [is explored] with the aim of reconstituting a memory for the present» (Le Temps, Geneva, December 3, 1999). Thus we need to remember to be cautious we re-reading events that are reconstituted by archaeologists.

Ethnocomparison and analogies: justifications and interpretations

The past is often used in a curious way. Going back to the issue of the production of maize beer, it would seem that the use of historical analogies automatically validates the interpretation of archeological facts. In any case, it is given more theoretical validity than the use of contemporary ethnographic examples.

In this way the importance of maize for the Incas is attributed to other pre-Inca cultures without any archaeobotanical data to support this vision. If we follow and distort a little bit Gould’s model of continuity 8 (Gould 1974): if something occurred during the Incas, it must have occurred before; and if it occurred before, it also must have occurred before that. Thus, the past is perceived as immutable, some sort of mystical time where linear or circular time did not exist. From this point of view, it is irrelevant to question of the validity of an example: if it’s from the past it’s accurate. The common expression of «and probably before that...» reflects this attitude 9. Once this said, we enter the mystical past, immemorial, where everything always existed from the moment teeth were planted and maize first bloomed 10.

This notion is reinforced by the cultural rupture introduced by the conquest: there is a before and an after. Whatever precedes 1532 is more valid as an analogy than what follows. The world of pre-Columbian becomes a vast cultural entity, not unlike the conceptualization of the golden age, that was lost after the intrusion of the European world in this American paradise. Little does it matter if this pre-Columbian unity is relative, or if we compare and transpose one anthropological culture with another more recent by 2000 years, or if our knowledge of the recent past is incomplete, finally, little does it matter if archaeological remains are not studied with rigor. After all, we were able to reconstruct our continuous identity if only for one instant.

The use of contemporary ethnographic analogies to interpret archaeological remains is not without risks. Apart from the chronological and cultural distances, there is always a question of knowing if it is legitimate to compare elements of cultures from different stages, in the Stewards sense of the word.

Moreover, it seems that researchers are not comparing the same «elements»: on the one hand we have processes (models), and the other, the remains of these processes. There is always an interpretative overvaluation of archaeological remains, mostly because authors base themselves on data from cultural anthropology (which are factual and complete) to give meaning to archaeological data which is sparse and full of gaps 11.

8 «Continuous models depend upon situations in which the living, ethnographical society upon which the model is based can be demonstrated to be historically continuous with the prehistoric culture being excavated in the same region.» (Gould 1976: 255)
9 It would be too long to cite here all the references where this expression appears. In fact we can find these expression in practically all archaeological references on maize.
10 Here we are primarily alluding to the myths of the central Peruvian coast concerning the God of Pachacamac (although there are also several similar Amazonian myths), which refer to the dismembered body of a woman/ child/ divinity (Vichama) whose different parts were once planted on earth and gave birth to the different plants of the Andean world. See for example (Ollero 1998: 80; Rostworowski De Díez-Canseco 1988: 74).
11 By instance Anders (1991: 168), Charpentaine et al. (1997: 80), Issell et al. (1991: 43) and many other authors.
DJINDJIAN (1991: 325) goes even further when he writes: «archaeology can only obtain partial and incomplete information, and its cultural reference is shadowed rather than enlightened by local analogies and by ideological or experimental presumptions.» Finally, there is a filling of archaeological gaps, or even worse a replacement of archeological missing data based on contemporary models. As proposed by GOUlD (1978: 254) «ethnographic analogies are by no means without value in archaeology, but they suffer from an inherent limitation – they cannot inform us about prehistoric behavior patterns that have no modern counterpart or analogue.»

The analysis of components

My main interest here, is not to track back or add to the polemic of whether to use ethnographic models in archaeology. My intention is rather to highlight the fact that many authors mix up two levels of analysis – ethnocomparison and historical analogy – without much consideration for the coherence of their discourse. Coherence of discourse is also hindered by the fact that most archaeologists do not even evaluate their own archaeological materials. To our knowledge, only MOORE (1989) referred to observations of contemporary remains of the production of chicha to analyze his own archaeological materials. He first created a grid of analysis with the different stages of chicha production, the different materials, and corresponding remains. He then compared his archaeological remains to the contemporary grid of analysis. There are some limitations to his study however: some of the material elements that are associated to chicha production are ambiguous because they can be used for other things. In fact, ethnoarchaeological studies have successfully shown that «the same material can have different functional connotations, and the same function can be obtained through different material dispositions» (GALLAY 1988: 182). Therefore, we need to evaluate each of the elements in terms of their potential ambiguity, and to make estimates of their behavior when combined (Table 1). Any artifact taken individually can be ambiguous (i.e. multifunctional) irrespective of its location in a site, and thus it cannot provide conclusive evidence of chicha production. In addition, no conclusion can be made about the associations between these artifacts, whatever their arrangement, number of elements, and location. Clearly, a piece of cloth together with a batán and some earth, cannot be taken as proof of chicha production.

Out of all the artifacts, ceramics jars or vessels have systematically been used as proof of chicha production (refer to note 11 for some examples). These claims have been made even though there are no typological analyses of the shapes and dimensions of these ceramics. Even more worrisome, is the fact that these claims continue to be made even though several studies have shown that between the production of a ceramic, its' shape and its' actual
Table 1: Steps in chicha-production, adapted by author from (Cutler & Cardenas 1947; Gillin 1947; Moore 1989; Nicholson 1980).

<table>
<thead>
<tr>
<th>steps</th>
<th>facilities</th>
<th>artifacts</th>
<th>products/byproducts</th>
</tr>
</thead>
<tbody>
<tr>
<td>maize selection</td>
<td></td>
<td>large jars</td>
<td>whole ears of same race maize</td>
</tr>
<tr>
<td>removal of kernels</td>
<td></td>
<td>cloth, matting, leaves</td>
<td>maize cobs, cupules & kernels</td>
</tr>
<tr>
<td>soaking maize</td>
<td>patio area</td>
<td>cloths, leaves</td>
<td>uncharred kernels & jora</td>
</tr>
<tr>
<td>germination</td>
<td>patio area</td>
<td>batán/chungos</td>
<td>jora</td>
</tr>
<tr>
<td>drying maize</td>
<td>patio area</td>
<td></td>
<td>jora, fragmented dry kernels</td>
</tr>
<tr>
<td>grinding</td>
<td></td>
<td>fire-redened vessel, stirring implement</td>
<td>charcoal, ashes,</td>
</tr>
<tr>
<td>cooking</td>
<td>hearth</td>
<td>cloth, basketry sieves</td>
<td>alfrecho, skins</td>
</tr>
<tr>
<td>decantation & straining</td>
<td></td>
<td>large vessels</td>
<td>starch grains & yeast</td>
</tr>
<tr>
<td>fermentation</td>
<td></td>
<td>mate or ceramic bowls</td>
<td>starch grains & yeast</td>
</tr>
<tr>
<td>consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

use there are several functional and semantic modifications (Lümbres 1987: 31). Moreover, ceramics of similar shape, or even the same ceramic may have different uses as a function of the cultural group and the person using it (Ceuninck 1994; LeROI-Gourhan 1971; Sabogal Wiesse 1982: 117, 127). The only supra-functions that may be accurately inferred are – recipients for cooking, to preserve food, transportation, etc – but in no case can we make accurate inferences about complex functions such as chicha production (Ceuninck 1994).

A more promising source of information about chicha production may be obtained by analyzing the potential byproducts, and the association of artifacts with these byproducts. Indeed, these elements may offer more direct evidence of the elaboration of chicha, particularly when there is evidence of maize. However, researchers need to be cautious when interpreting remains such as non carbonized maize grains, cobs or cupule fragments. These remains are ambiguous as they may indicate another type of preparation (irrespective of the type of ceramic with which they are associated). In contrast, there is a greater probability that the presence of jora (germinated grain) indicates the production of chicha. We emphasize «greater probability» because depending of the context and the number of items found, the germination of grains could also be accidental. However, if the jora is directly associated with batán (for grinding), or if they are found scattered in a small space (germination surface), then the jora may be used as a direct indicator of chicha production.

The same principle applies for the interpretation of yeast grains. Starch grains found in a batán or in a ceramic are not evidence of chicha production but of grinding. Even when associated with yeast, there is always a possibility that the fermentation is simply the result of stockade of grains, as opposed to the result of human control and manipulation. Even where there is a very high probability that these elements are indicating chicha production, we should interpret remains with caution.

The only irrefutable element in the production of chicha is alfrecho: a germinated grain, that has been ground and cooked, and mixed together with loose grains' skin. Unfortunately it is not very simple to identify alfrecho in a site. To our knowledge, Nicholson is alone in having identified alfrecho remains in the site of Manchán. It is highly likely that alfrecho was used to feed animals (llamas, guinea pig), or as combustible once dry, or simply biologically degraded (as opposed to conserved in a pit). Only in-depth analyses of alfrecho and its transformations (e.g. carbonization, remains in the animal gastric tube, etc.) would allow its identification in other contexts. To date, this type of analysis has
never been conducted. We have seen that the value of archaeological remains varies for different hypotheses. The value we give to archaeological remains must be taken into account before interpretation: unfortunately this is rarely the case.

The interpretative phyllum of Pampa Chica

To illustrate some of the over-interpretation problems raised in this article we will track back the interpretative phyllum that lead to Pampa Chica. The authors (Dulanto et al. in press) proposed a zone for the production of chicha based on: the particularity of the material (big bowls forming big jars, and maize fragments) and the association of the contexts (wholes that had the size of the jars, and of the hearths) while taking into account their disposition in space and their association to material remains. The authors support their claim by citing an archaeo-

12 In fact there is no archaeobotanical study presented, and there are no quantitative tables.

13 In his ethnoarchaeological analysis Shimada gives an indication of the supra-functionality of these ceramics. In contrast, in his book about Pampa Grande he mentions the utilization of these ceramics for chicha production which we have seen cannot be determined.

14 Otherwise, Shimadas self-citations are just repetitions of the same approximate facts and interpretations.

15 To these interpretations problems we should add the numerous contradictions in the text (to cite an example: carbonized maize becomes an indication of chicha production in p. 222, when it wasn’t one before that). Thus the systematic use of circular reasoning where references become the cause, for example p. 184 «this relative abundance of maize was expected considering the importance of maize as food and as the main ingredient for chicha», or p. 221 «below, we see that at least some of the importance of the Inca and the Chimu attached to chicha dates back to Moche V times», or further still «their basic shape [...] may have [...] been inspired by cut gourds bowls that are still used today in rural communities on the North Coast to serve chicha.» (ibid. 194)
Archaeobotanical evidence at Pampa Chica

In light of the previous discussion, what affirmations can we make about the production of maize chicha at Pampa Chica? As stated in the introduction, nothing in the analyses allow us to affirm that there was a production of chicha in Pampa Chica. In this section, I present the results of archaeobotanical analyses conducted with 251 flotations of archaeological sediments, and 178 botanical samples obtained during the excavation.

We could not identify non-ambiguous remains (as previously defined) such as alfresco or germinated grains of maize jora at Pampa Chica. In fact, we only have ambiguous remains: charred maize kernels, uncharred maize cobs, big jars half-sunken in pits, and numerous hearths in structure 2 (recinto 22). However, several analyses allow us to get around the ambiguity of these remains.

First, the spatial distribution of the macro-remains shows that structure 2, all periods confounded, contains 70% of the total macro-remains found. If we create big categories to classify these botanical remains, actual and presumed use, we notice that structure 2 contains 67% of edible plants, 80% of charred wood, 88% of the plants used for industrial & construction purposes, and about 50% of the epidermis (peels) and floral parts. In contrast, structure 1 contains 70% of wild plants, which usage is not known (pharmaceutical ?, present in animal feces and used as combustible ?, contamination ?, carried by feet ?), as well as 80% of non determined plants (lack of reference for their identification, or too fragmented to allow identification). Interestingly, structure 2 contains the majority of domestic vegetal remains, as well as most of fruit trees species and wood charcoals; and structure 1, contains the majority of wild plants which are not know to be necessarily edible, as well as the 80% of the unknown specimens.

Clearly there are different activities in these two sectors, sector 2 could be a place for conservation, transformation and preparation of vegetal foods. Thus, maize is found mostly in sector 2: 93% of the grains and 67% for maize cobs and/or cupules. This could be a first indicator of the production of chicha, but as already discussed these remains are ambiguous as they may also have been consumed or used in another way.

The quality of the remains can also give some indication as to how maize was used. In this case, we only have carbonized grains and cobs or non-carbonized fragments of cobs (cupules). Grains are mostly found in sector 2 (around 91% against 9% in sector 1). These grains would seem non-germinated, although this is hard to ascertain because the carbonization can lead to big deformations and the germ is a very delicate part that can easily break once carbonized. Moreover, it seems that these grains were not ground before carbonization, but once again we cannot ascertain this. In any case, a whole or broken grain can result from multiple preparations that have nothing to do with chicha preparation. Cobs and cob fragments (cupules) are mostly found in sector 2, but in a different proportion than grains (72% for sector 2 against

16 All the samples have an equal volume of 3 liters.
17 The importance of "industrial" plants in sector 2 could indicate the presence of a roof to protect these activities, or any other activity.
18 Problems of modern references for their identification, or samples too fragmented to allow their identification.
Figure 9: Repartition of botanical macroremains in Pampa Chica by use.

Figure 10: Repartition of the edible botanical macroremains in Pampa Chica.
28% for sector 1). This may indicate a different consumption in these two sectors: a greater picking off of grains in sector 2, which could be an indicator of chicha production, and a consumption of whole maize (with cob) in sector 1. However, the greater presence of maize cobs and cupules in sector 1 is due to a higher fragmentation than in sector 2: in fact 63% of whole cobs are found in this latter sector.

Finally, the analysis of the content of ceramics can give information about their use. Unfortunately, it was not possible to use the corpus of ceramics in sector 2: in fact, most of these ceramics were conscientiously washed after being excavated, and at the time it was impossible to obtain glacial acetic acid to remove materials that may have subsisted in the porosity and intractability. Therefore I had to come back to the site of Pampa Chica three years later to obtain a sample of the big jars that may have contained the chicha. Our sample was obtained from the bottoms of 5 non-washed ceramics on which I proceeded to scrape the internal walls with a dentist spatula. The sediments were recovered and observed through an Scanning Electron Microscope. The material was non-concentrated, so I could only recover a small part of the particles that were of interest: the phytoliths and starch grains.

Among the different phytoliths, only one was diagnostic of a Poaceae of the Panicoideae tribe to which maize belongs. The size, which is larger than 15 μm may indicate a maize phytolith (PEARSEALL 1989). However, we must remain cautious as it is the only one we could observe and it is not in a position that allowed accurate observation and measurement. I was able to observe only one grain of starch, which according to REICHERT (1913) could come from maize, but also from peanuts. There were no observations of yeast. Based on these microscope analyses it becomes very hard to conclude that there was chicha production: the jars may well have contained maize, but in a non-ground and non-fermented state. It should be acknowledged that the small size of the sample also plays a role if this lack of precision. The size of the sample should be increased before any hypothesis about maize chicha production at Pampa Chica is definitely accepted or rejected, and before I can propose an alternative hypothesis about the functionality of sector 2 and about the use of these big jars. For instance, the great presence of peanuts in sector 2 (density of 99.41/m² instead of 7.1/m² for maize) associated to starch of peanuts in a big jar could suggest, as a working hypothesis, that there was rather a production of chicha de maíz, that is peanut beer...

Towards an Andean Ethnoarchaeobotany

Based on these analyses I cannot conclude there is evidence of maize chicha production at the site of Pampa Chica as had been preliminary proposed. In fact, we have no non-ambiguous botanical remains, and the different analyses I conducted – spatial distribution, qualitative and microscope – do not offer any element that could support the production of maize beer, even though the probability is slightly increased. But, from an epistemological point of view: is it correct to affirm an activity based solely on the probability of its existence?

What can be said, is that it is necessary to use extremely precise grids of analysis with unequivocal descriptive elements: the more equivocal elements we consider, the more the ambiguity increases. Unequivocal elements can only be determined through strict ethnographic observations that are directly relevant to archaeology. Better still, we should refer to ethnoarchaeological studies which are the only ones that offer information (specific then general due to the multiplicity of studies) that is useful to archaeological research, because they do a analysis of materials in their systemic contexts (SCHIFFER 1978).

I am conscious of the fact that archaeology cannot provide an answer to all questions, but I believe that by multiplying the sources of references (for example with experimental archaeology: the aim of the experimental archaeology is to reproduce situations in which behaviors are simulated), it should be possible to provide a more accurate decoding of archaeological remains. We should also pay more attention to the principles of retrodiction from a prediction, as opposed to forcing a match between an archaeologica reality and our fantasies as archaeologists. Finally, we should keep in mind that archaeological remains will inevitably have gaps, and thus that it is not possible to reconstruct all aspects of their production and less still the social relations that generated them. Consequently, the equation that serves as the title of this article should become: archaeobotany + ethnoarchaeology <= palaeoethnobotany.

Résumé

Resumen

Los estudios arqueobotánicos en los Andes centrales y septentrionales, cuyos avances son recientes, recurren muy a menudo a modelos etnográficos o históricos para interpretar los datos arqueológicos. Este comparatismo, generalmente mal controlado, lleva a veces a formular hipótesis paleoethnobotánicas no verificables, y hasta inaceptables. ¿ Sobre qué bases pues podemos interpretar los datos arqueobotánicos ? Y sobre todo, tenemos de qué hacerlo en América Andina ? Tomaremos el sitio de Pampa Chica (Lurín, Perú) como ejemplo, e intentaremos esbozar algunos campos de investigación.
Figure 11: Panicoidae phytolith from Pampa Chica recinto 22 ceramics, possibly from maize.

Figure 12: Starch grain from Pampa Chica recinto 22 ceramics, possibly from maize.
Bibliography

ANDERSON Martha

BENZ Bruce

BONAVIA Duccio

BONAVIA Duccio, Alexander GROGAN

BURGER Richard

CAMINO Lupe
1987 Chicha de maiz: bebida y vida del pueblo de Catacaso. Plura: CIPCA.

CÁRDEAS J., J. RODRÍGUEZ y L. AGUIRRE

CEUNINCK Grégoire

CHAPDELAINE Claude, Santiago Uceda et M. MOYA

CHEVAILIER Alexandre

COBO Bernabé, Padre

CUTLER Hugh

CUTLER Hugh, Martin CARDENAS

DANLIAL François

DULANTO Jahlí, Luis Cáceres, María Inés Velarde et al.
1979 "Pampa Chica: un análisis de problemas de arquitectura, áreas de actividad y programas rituales", in: Buzan Richard, Knysvet Maxwodel (éd.), El Forma- tivo de la Costa Central.- Lima: PUCP, [sous presse]

DUBANK Dunn Mary

FELDMAN Robert Alan
1980 Aspero, Peru: architecture, subsistence economy and other artifacts of a preceramic maritime chiefdom.- Harvard university: Department of anthropology, [PhD]

GALIMAT Walton

GAYLE Alain

GILLIN John
1947 Moche, a Peruvian Coastal Community.- Washington: Smithsonian Institution. (Institute of Social Anthropology, 3)

GOULD Richard
1974 "Some current problem in Ethnoarchaeology", in: Donnan Christopher (éd.), Ethnoarchaeology.- Los Angeles: University of California (Institute of archaeology Monographs, 4)
1978 "Beyond Analogy in Ethnoarchaeology", in: Gould R. (éd.), Explorations in ethnoarchaeology, pp. 249-293. Albuquerque: Univ. of New Mexico Press. (School of american research advanced seminar series)

GREIDER Terence, Alberto BUENDO MENDOZA, Jr., Earl SMITH et al.

GROBMAN Alexander, Wilfredro SALHUANA, Ricardo SEVILLA et al. 1961 Races of maize in Peru.- Washington: National academy of sciences. (National research council publication, 919)

1993 Agriculture and the onset of political inequality before the Inka.- Cambridge: Cambridge Univ. Press. (New studies in archaeology)

LERCH-GOURHAN André 1971 Evolution et techniques, 1: L’Homme et la matière.- Paris: Albin Michel. (Sciences d’aujourd’hui)

MORRIS Craig and Donald THOMPSON 1985 Huanuco Pampa: An Inca City and Its Hinterland.- London: Thames & Hudson.

PEARSALL Deborah

PEARSALL Deborah and Dolores PIPERNO

PIPERNO Dolores

PIPERNO Dolores and Deborah PEAROAL

POPPER Virginia

POZORSKI Sheila, Thomas POZORSKI
1987 Early settlement and subsistence in the Casma valley, Peru.- Iowa City: University Press.

PROULXS Donald
1968 «Field research and time differences in Nasca pottery», - Berkeley: University of California Press. (Publication in Anthropology, 5)

REICHERT Edward
1913 The differentiation and specificity of starches in relation to genera, species, etc.- Washington: Carnegie Inst.

ROSTWOROWSKI DE DIEZ CANECHO María
1966 «Ethnichistoria de un valle costeño durante el Tawantinsuyu», - Revista del Museo Nacional 35.

ROSTWOROWSKI DE DIEZ CANECHO María

SABOGAL WIESSE José
1982 La cerámica de Piura.- Quito: Instituto andino de arte popolares.

SCHIFFER Michael

SCHREIBER Katharina

SHIMADA Izumi
1976 Socioeconomic organization at Moche V Pampa Grande, Peru: prelude to a major transformation to corn.- Arizona University: Department of anthropology. (PhD)

SUYMER M., A. LONG and R. KRA
1993 Radiocarbon 35 (3).

ULMAUFI Marcelle
1988 Paleoethnobotanical investigations at the initial period site of Cardal, Peru.- Columbia: Univ. of Missouri-Columbia, Dep. of Anthropology. (Unpublished M.A Thesis)
1993 «Phytolith evidence for initial period maize at Cardal, Central coast of Peru», in: PEARSALL Deborah and Dolores PIPERNO (eds.), Current research in phytolith analysis: applications in archaeology and paleoecology, pp. 125-130.- Philadelphia: Univ. of Pennsylvania. (MASCA research papers in sci. and archaeol., 10)